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Math in Microbiology

Where’s the Math?

quantify microbial growth
population biology-mixed cultures

waste treatment
bio-remediation
biofilms, quorum sensing
mammalian gut microflora
food, beverage (beer,wine)

gene regulatory networks

lac-operon
genetic engineering, synthetic biology

disease modeling

Viral infections: HIV, HBV, Influenza
Bacterial infections: TB,
antibiotic treatment, antibiotic resistance
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Microbial Growth Exponential Growth

Malthusian Growth

N = biomass of bacteria
r = maximum growth rate

per capita growth rate =
△N

N △t
= r

or
dN
dt

= rN

Solution is exponential growth

N(t) = N(0)ert

with doubling time: N(T ) = 2N(0)

T = ln(2)/r
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Microbial Growth The Logistic Equation: Verhulst(1845)

The Logistic Equation

dN
dt

= rN
(

1 −
N
K

)

No change in N: dN
dt = 0 when N = K , equilibrium value of biomass.
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Microbial Growth Growth under nutrient limitation

Growth under nutrient limitation, Monod(1942)
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r = maximum rate

a = half saturation

dN
Ndt

= r
S

a + S
,

dN
−dS

= yield constant = γ
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Microbial Growth Growth under nutrient limitation

Growth in Batch Culture

dS
dt

= −
1
γ

rSN
a + S

, S(0) = 2

dN
dt

=
rSN

a + S
, N(0) = 0.25
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Continuous Culture

The Chemostat

Substrate

Biomass
V

DS D(S+x)0
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Continuous Culture

The Old Tank Problem-No Bacteria

V = Volume of chemostat(ml)
F = Inflow = Outflow rate (ml/hr)
S0 = Concentration of Substrate in Feed (gm/ml).
S = Concentration of Substrate in Chemostat (gm/ml).

Rate of change of Substrate (gm/hr)= INFLOW(gm/hr) - OUTFLOW(gm/hr)

d
dt

(VS) = FS0
− FS

Let D = F/V be the Dilution Rate. Then

dS
dt

= D(S0
− S).

Mean Residence Time of chemostat is 1
D = V

F .
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Continuous Culture Microbial Growth in the Chemostat

Classical Chemostat Model

Novick & Szilard, 1950.

dS
dt

= D(S0
− S) −

1
γ

rSN
a + S

dN
dt

=
rSN

a + S
− DN

Environmental parameters: D = F/V , S0

Biological parameters: r , a, γ
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Continuous Culture Microbial Growth in the Chemostat

Break-even nutrient level

dN
Ndt

=
rS

a + S
− D = 0

when

S = λ =
aD

r − D
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Continuous Culture Microbial Growth in the Chemostat

Survival or Washout

If flow rate is not too large:

D =
F
V

< r

and if the nutrient supply exceeds the break-even level:

λ < S0

then bacteria survive:
N(t) → γ(S0

− λ)

Otherwise, they are washed out:

N(t) → 0
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Continuous Culture Microbial Growth in the Chemostat

Phase Plane

S ’ = 1 − S − m S x/(a + S)
x ’ = x (m S/(a + S) − 1)  

m = 2
a = 0.5
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Continuous Culture Competition for Nutrient

Competing Strains of Bacteria

dS
dt

= D(S0
− S) −

1
γ1

r1N1S
a1 + S

−
1
γ2

r2N2S
a2 + S

dN1

dt
=

(

r1S
a1 + S

− D
)

N1

dN2

dt
=

(

r2S
a2 + S

− D
)

N2
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Continuous Culture Competition for Nutrient

Break-even concentrations

dN1

N1dt
=

r1S
a1 + S

− D = 0 ⇔ S = λ1 =
a1D

r1 − D
dN2

N2dt
=

r2S
a2 + S

− D = 0 ⇔ S = λ2 =
a2D

r2 − D
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Continuous Culture Competition for Nutrient

Competitive Exclusion Principle

Hsu,Hubbell,Waltman (1977); Aris, Humphrey (1977), Powell(1958),
Stewart,Levin(1973), Tilman (1982)

Assume that both species can survive in the absence of competition. If

λ1 < λ2 < S0

Then N1 wins:
N1(t) → γ1(S0

− λ1), N2(t) → 0

Winner is the organism that can grow at the lowest nutrient level.
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Continuous Culture Competition for Nutrient

Winner grows at lowest substrate level

x1 ’ = 1.2 x1 (1 − x1 − x2)/(1.01 − x1 − x2) − x1
x2 ’ = 1.5 x2 (1 − x1 − x2)/(1.1 − x1 − x2) − x2 
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Bacteriophage and Bacteria in Chemostat

Life Cycle of Phage
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Bacteriophage and Bacteria in Chemostat

Stewart, Levin, Chao, The American Naturalist (1977)

S = glucose, N = E. coli, P = T4 Phage, NI = infected E. coli
τ = 0.6hrs phage latent period, b = 80 burst size

dS
dt

= D(S0
− S) −

1
γ

rSN
a + S

dN
dt

=

(

rS
a + S

− D
)

N − kNP

dNI

dt
= kNP − e−Dτ kN(t − τ)P(t − τ) − DNI

dP
dt

= be−Dτ kN(t − τ)P(t − τ) − kN(t)P(t) − DP(t)
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Bacteriophage and Bacteria in Chemostat

Phage-Bacteria cycles
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Food Chain

Food Chain: Z eats Y eats X

dX
dt

= X(1 − X) −
r1XY

a1 + X
dY
dt

=
r1XY

a1 + X
− d1Y −

r2YZ
a2 + Y

dZ
dt

=
r2YZ

a2 + Y
− d2Z

A. Hastings, Chaos in a 3-species food chain, Ecol. Soc. Amer. 72 (1991)
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Food Chain

Teacup attractor for Food Chain
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